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A laser-diode bar incorporated into an external cavity with a volume Bragg mirror produced 30 W of cw out-
put power within a 20 pm �10 GHz� spectral linewidth (FWHM) centered at 780 nm. The device output
power exceeded 90% of that for the free-running laser-diode bar. The emission wavelength was tuned over a
400 pm range without broadening laser spectrum width. Absorption of 90% of the laser radiation by a 25 mm
vapor cell containing Rb that has been pressure broadened with 300 torr of ethane was demonstrated.
© 2008 Optical Society of America

OCIS codes: 140.2010, 140.5960, 140.5560.
Diode lasers with gigahertz-wide emission spectra
have a great potential for applications in Raman
spectroscopy, atom cooling, and in the emerging field
of optical pumped alkali vapor (cesium, rubidium,
and potassium) lasers. Efficient operation of lower-
pressure ��1 atm� alkali-vapor lasers requires pump
sources with a bandwidth that matches the pressure-
broadened absorption band ��10 GHz� of the alkali
vapor. Several approaches to match the pump-source
linewidth to the absorption feature of the alkali have
been attempted. Owing to their narrow linewidths,
Ti:sapphire [1,2], dye [3], and narrow-banded single-
emitter diode lasers have previously been used to
pump Rb and Cs alkali lasers. A distributed-feedback
laser diode (LD) emitting 1 W within 0.1 nm spectral
linewidth was demonstrated in[4]. Single LDs and
laser-diode bars (LDBs) integrated into wavelength-
selective external cavities with surface diffraction
gratings have shown narrowing of linewidths down
to tens of gigahertz at power levels of tens of watts
[5–10]. Conversely, the alkali-vapor lasers have been
optically pumped by LD arrays with linewidths ex-
ceeding several nanometers (a few terahertz) by us-
ing high-pressure buffer gases [11–13] to broaden the
alkali absorption transition.

Recent technological progress with volume Bragg
gratings (VBG) recorded in photothermorefractive
glass has opened new opportunities for the design
and fabrication of compact external-cavity semicon-
ductor laser systems suitable for optical pumping of
solid-state, fiber, and gas lasers [14–16]. Spectral
narrowing down to the subnanometer range for LDs,
LDBs, and stacks integrated in VBG external cavi-
ties has been shown [17–20]. Recently, a LDB with a
volume Bragg external cavity has demonstrated an
output power of 13.5 W within a 7 GHz spectral
width in cw operation for pumping of a 3.2-GHz-wide
oxygen molecule transition [20]. However, the laser

system had only 0.5 W/A slope efficiency and re-
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quired a drive current of 45 A to achieve 13 W output
power. Such low efficiency could be a result of 2 nm
wavelength mismatch between positions of a free-
running laser spectrum and a grating-resonant
Bragg wavelength.

In this Letter, we report on the development of a
volume Bragg laser (VOBLA) operating at 780 nm
with 30 W cw output power. The VOBLA output
power is 90% of the free-running LDB power. The
VOBLA emission-spectrum width was on the order of
10 GHz (FWHM), the spectral contrast was about
40 dB, and the laser radiation absorption by a low-
pressure Rb cell at 780 nm was 90%.

The VOBLA consisted of an off-the-shelf passively
cooled LDB, a fast-axis collimator, and a reflective
volume Bragg mirror used as a wavelength-selective
output coupler. The LDB was fabricated by LaserTel
Inc. and consisted of 24 LDs with 2 mm cavity length
and 150 �m aperture width. The LDs were equally
distributed across the 1-cm-wide LDB. The laser
bar facets were high-reflection-/anti-reflection-coated
with reflection coefficients of 95% and 0.5%, respec-
tively. The 18-mm-thick Bragg mirror was designed
and fabricated at OptiGrate. This mirror had a dif-
fraction efficiency of 70% at resonant wavelength.
The spectral and the angular selectivity of the mirror
were around 30 pm and 1° (FWHM), respectively.
The resonant Bragg wavelength at normal incidence
(retroreflection) was 779.7 nm. The fluctuation of dif-
fraction efficiency was less than 5% across the full
aperture. The Bragg mirror and a fast axis collimator
had antireflection coatings to prevent parasitic re-
flections. The LDB and the Bragg mirror were
mounted on thermoelectrically cooled copper heat
sinks with a temperature stability of ±0.1 K.

The free-running LDB and VOBLA were studied in
cw operation. To evaluate the overall laser-emission
spectra, the output radiation was collected into an in-

tegrating sphere and coupled into an optical-
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spectrum analyzer (OSA) (ANDO AQ6317B) using a
single-mode fiber. The spectral resolution of the ex-
perimental setup was 15 GHz �30 pm�. Precise mea-
surement of the VOBLA mode structure and spectral
width was performed using a Fabry–Perot interfer-
ometer with 15 GHz free spectrum range (FSR) and
0.8 GHz spectral resolution.

Fig. 1. (a) Emission spectra of free-running (dashed curve)
and volume Bragg (solid curve) diode lasers in semi-log
scale. (b) Emission spectrum of a VOBLA in linear scale.

Fig. 2. Emission spectrum of the VOBLA measured using

a Fabry–Perot interferometer with a 15 GHz FSR.
Figure 1(a) shows the emission spectra of the free-
running (dashed curve) and volume Bragg (solid
curve) LDBs measured at 20 W cw output power. The
emission spectrum of the free-running LDB had a
maximum around 780 nm and a spectral width of
5 nm (FWHM) at room temperature. After integra-
tion of the LDB into the external Bragg resonator,
the laser emission spectrum had been narrowed
down to less than 15 GHz �30 pm� (FWHM), which
was the spectral resolution of the OSA; see Fig. 1(b).
The spectral contrast (side-mode suppression ratio)
of the VOBLA emission spectrum was approximately
40 dB. The precise value of the VOBLA spectral line-
width was determined using a Fabry–Perot interfer-
ometer with 15 GHz FSR. Figure 2 shows the mode
structure of the VOBLA producing 20 W cw power.
The spacing between the next-order modes in the cir-
cular Fabry–Perot fringe pattern equal to the free
spectral range �15 GHz� of the Fabry–Perot interfer-
ometer. The spectral modes of individual lasers in the
laser bar were overlapped, producing a VOBLA spec-
trum with a linewidth of less than 10 GHz (FWHM).
The spectral linewidth of individual LDs imple-
mented into the similar external Bragg resonator
achieved 14 pm �7 GHz� [19]. In the LDB, the emis-
sion spectra of individual LDs were slightly different
owing to spatial fluctuations of resonant Bragg wave-
length across the aperture. The VOBLA spatial mode
distribution measured at 20 W cw output power
showed multi mode operation, with a far-field diver-
gence of around 8° FWHM along the slow axis direc-
tion.

Compared with the free-running LDB, the spectral
width of the VOBLA was narrowed by 250 times with
only a 10% output power decrease at maximum drive
current (Fig. 3). The decrease in current threshold
and the drop in slope efficiency resulted from higher
reflection from the external Bragg mirror as com-
pared to the free-running LDB.

Optical pumping of rubidium vapor media requires
tuning of pump laser emission to precisely overlap
with Rb absorption bands. The VOBLA emission
spectrum was thermally tuned over 400 pm spectral

Fig. 3. cw output power of a free-running (empty square)
and a volume Bragg (filled square) LDBs versus driving
current.
range by heating the Bragg mirror, which had a ther-
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mal shift of 8 pm/K (Fig. 4). The thermal shift of the
wavelength does not increase the width of the laser
spectrum. The absorption of the pump light by Rb at-
oms was measured in the 25-mm-thick alkali cell at
420 K. The cell contained excess Rb with a vapor
phase number density of 7.2�1013 at/cc at 420 K
mixed with C2H6 buffer gas (300 Torr at 298 K). This
resulted in an absorption transition on the order of
8 GHz (FWHM). The Rb cell absorbed 90% of VOBLA
radiation at wavelength of 779.92 nm.

In summary, a diode laser bar with a volume Bragg
output coupler emitting at 780 nm produced up to
30 W cw output power with a slope efficiency of
0.8 W/A. The laser had a spectral width (FWHM) of
10 GHz �20 pm� and a tunability of over 400 pm. The
output power of the volume Bragg laser exceeded
90% of the output power of the free-running LDB.
The low-pressure Rb cell absorbed 90% of the laser
emission.

The authors are grateful to L. Glebova, I. Ciapu-
rina, I. Popkova, E. Rotari, A. Balam, and J. Lumeau
for reflecting Bragg grating fabrication and certifica-
tion. The work was funded in part by Air Force Re-
search Laboratory (contract FA9451-07-C-0199).

Fig. 4. Emission spectra of a volume Bragg diode laser at
different grating temperatures.
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